Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence.

نویسندگان

  • Sebina Shrestha
  • Michael J Serafino
  • Jesus Rico-Jimenez
  • Jesung Park
  • Xi Chen
  • Siqin Zhaorigetu
  • Brian L Walton
  • Javier A Jo
  • Brian E Applegate
چکیده

Multimodal imaging probes a variety of tissue properties in a single image acquisition by merging complimentary imaging technologies. Exploiting synergies amongst the data, algorithms can be developed that lead to better tissue characterization than could be accomplished by the constituent imaging modalities taken alone. The combination of optical coherence tomography (OCT) with fluorescence lifetime imaging microscopy (FLIM) provides access to detailed tissue morphology and local biochemistry. The optical system described here merges 1310 nm swept-source OCT with time-domain FLIM having excitation at 355 and 532 nm. The pulses from 355 and 532 nm lasers have been interleaved to enable simultaneous acquisition of endogenous and exogenous fluorescence signals, respectively. The multimodal imaging system was validated using tissue phantoms. Nonspecific tagging with Alexa Flour 532 in a Watanbe rabbit aorta and active tagging of the LOX-1 receptor in human coronary artery, demonstrate the capacity of the system for simultaneous acquisition of OCT, endogenous FLIM, and exogenous FLIM in tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization

Most pathological conditions elicit changes in the tissue optical response that may be interrogated by one or more optical imaging modalities. Any single modality typically only furnishes an incomplete picture of the tissue optical response, hence an approach that integrates complementary optical imaging modalities is needed for a more comprehensive non-destructive and minimally-invasive tissue...

متن کامل

Automated analysis of multimodal fluorescence lifetime imaging and optical coherence tomography data for the diagnosis of oral cancer in the hamster cheek pouch model

It is known that the progression of oral cancer is accompanied by changes in both tissue biochemistry and morphology. A multimodal imaging approach combining functional and structural imaging modalities could therefore provide a more comprehensive prognosis of oral cancer. This idea forms the central theme of the current study, wherein this premise is examined in the context of a multimodal ima...

متن کامل

Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy.

Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative inte...

متن کامل

An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging

We present an all-fiber-optically based endoscope platform for simultaneous optical coherence tomography (OCT) and fluorescence imaging. This design entails the use of double-clad fiber (DCF) in the endoscope for delivery of OCT source and fluorescence excitation light while collecting the backscattered OCT signal through the single-mode core and fluorescence emission through the large inner cl...

متن کامل

Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy.

We develop a dual-modality device that combines the anatomical imaging capabilities of optical coherence tomography (OCT) with the functional capabilities of laser-induced fluorescence (LIF) spectroscopy. OCT provides cross-sectional images of tissue structure to a depth of up to 2 mm with approximately 10-microm resolution. LIF spectroscopy provides histochemical information in the form of emi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomedical optics express

دوره 7 9  شماره 

صفحات  -

تاریخ انتشار 2016